Distributionally Robust Groupwise Regularization Estimator

نویسندگان

  • Jose H. Blanchet
  • Yang Kang
چکیده

Regularized estimators in the context of group variables have been applied successfully in model and feature selection in order to preserve interpretability. We formulate a Distributionally Robust Optimization (DRO) problem which recovers popular estimators, such as Group Square Root Lasso (GSRL). Our DRO formulation allows us to interpret GSRL as a game, in which we learn a regression parameter while an adversary chooses a perturbation of the data. We wish to pick the parameter to minimize the expected loss under any plausible model chosen by the adversary who, on the other hand, wishes to increase the expected loss. The regularization parameter turns out to be precisely determined by the amount of perturbation on the training data allowed by the adversary. In this paper, we introduce a data-driven (statistical) criterion for the optimal choice of regularization, which we evaluate asymptotically, in closed form, as the size of the training set increases. Our easy-to-evaluate regularization formula is compared against cross-validation, showing comparable performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance-based Regularization with Convex Objectives

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen’s empirical likelihood, and we provide a number of finite-sample and asymptotic result...

متن کامل

Variance-based Regularization with Convex Objectives

We develop an approach to risk minimization and stochastic optimization that pro-1vides a convex surrogate for variance, allowing near-optimal and computationally2efficient trading between approximation and estimation error. Our approach builds3off of techniques for distributionally robust optimization and Owen’s empirical4likelihood, and we provide a number of f...

متن کامل

A Distributionally-robust Approach for Finding Support Vector Machines

The classical SVM is an optimization problem minimizing the hinge losses of mis-classified samples with the regularization term. When the sample size is small or data has noise, it is possible that the classifier obtained with training data may not generalize well to population, since the samples may not accurately represent the true population distribution. We propose a distributionally-robust...

متن کامل

Distributionally Robust Optimization for Sequential Decision Making

The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017